Materiable Ken Nakagaki, Luke Vink, Jared Counts, Daniel Windham, Daniel Leithinger, Sean Follmer, Hiroshi Ishii
Shape changing interfaces give physical shapes to digital data so that users can feel and manipulate data with their hands and bodies. However, physical objects in our daily life not only have shape but also various material properties. In this project, we propose "Materiable," an interaction technique to represent material properties using shape changing interfaces. Specifically, by integrating the multi-modal sensation techniques of haptics, our approach builds a perceptive model for the properties of deformable materials in response to direct manipulation without precise force feedback.
As a proof-of-concept prototype, we developed preliminary physics algorithms running on pin-based shape displays. The system can create computationally variable properties of deformable materials that are visually and physically perceivable. In our experiments, users identify three deformable material properties (flexibility, elasticity and viscosity) through direct touch interaction with the shape display and its dynamic movements.
Our research shows that shape changing interfaces can go beyond simply displaying shape allowing for rich embodied interaction and perceptions of rendered materials with the hands and body.
Credits:
Ken Nakagaki*, Luke Vink*, Jared Counts, Daniel Windham, Daniel Leithinger, Sean Follmer, Hiroshi Ishii
* Contributed Equally
Ken Nakagaki*, Luke Vink*, Jared Counts, Daniel Windham, Daniel Leithinger, Sean Follmer, Hiroshi Ishii
* Contributed Equally