ExoskinBasheer Tome and Hiroshi Ishii / 2015

Exoskin

Programmable materials have the power to bring to life inert materials in the world around us. Exoskin, provides a way to embed a multitude of static, rigid materials into actuatable, elastic membranes, allowing the new semi-rigid composites to sense, react, and compute.

Membrane-backed rigid materials have the potential to become a broader, more versatile platform for introducing texture change and sensing into a variety of other products as well. By deeply embedding soft materials with more-static materials, we can break down the divide between rigid and soft, and animate and inanimate, providing inspiration for Human-Computer Interaction researchers to design more interfaces using physical materials around them, rather than just relying on intangible pixels and their limitations.

We also provide Exowheel, an automotive steering wheel, as a case study illustrating the concrete benefits and uses of texture change as a multi-modal, bi-directional interface. By incorporating Exoskin, Exowheel is able to transform its surface dynamically to create a customized grip for each individual user, on-the-fly, as well as to adapt the grip during the drive, as the car moves from congested city driving to rougher rural roads.

 

Copyright & Usage policy

By downloading this picture, you accept that it is licensed to you under the following conditions:

Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

© 2012 Tangible Media Group / MIT Media Lab

Papers